Twilight zone of protein sequence alignments.
نویسنده
چکیده
Sequence alignments unambiguously distinguish between protein pairs of similar and non-similar structure when the pairwise sequence identity is high (>40% for long alignments). The signal gets blurred in the twilight zone of 20-35% sequence identity. Here, more than a million sequence alignments were analysed between protein pairs of known structures to re-define a line distinguishing between true and false positives for low levels of similarity. Four results stood out. (i) The transition from the safe zone of sequence alignment into the twilight zone is described by an explosion of false negatives. More than 95% of all pairs detected in the twilight zone had different structures. More precisely, above a cut-off roughly corresponding to 30% sequence identity, 90% of the pairs were homologous; below 25% less than 10% were. (ii) Whether or not sequence homology implied structural identity depended crucially on the alignment length. For example, if 10 residues were similar in an alignment of length 16 (>60%), structural similarity could not be inferred. (iii) The 'more similar than identical' rule (discarding all pairs for which percentage similarity was lower than percentage identity) reduced false positives significantly. (iv) Using intermediate sequences for finding links between more distant families was almost as successful: pairs were predicted to be homologous when the respective sequence families had proteins in common. All findings are applicable to automatic database searches.
منابع مشابه
The twilight zone of cis element alignments
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence align...
متن کاملImproved pairwise alignments of proteins in the Twilight Zone using local structure predictions
MOTIVATION In recent years, advances have been made in the ability of computational methods to discriminate between homologous and non-homologous proteins in the 'twilight zone' of sequence similarity, where the percent sequence identity is a poor indicator of homology. To make these predictions more valuable to the protein modeler, they must be accompanied by accurate alignments. Pairwise sequ...
متن کاملConFunc - functional annotation in the twilight zone
MOTIVATION The success of genome sequencing has resulted in many protein sequences without functional annotation. We present ConFunc, an automated Gene Ontology (GO)-based protein function prediction approach, which uses conserved residues to generate sequence profiles to infer function. ConFunc split sets of sequences identified by PSI-BLAST into sub-alignments according to their GO annotation...
متن کاملWithin the twilight zone: a sensitive profile-profile comparison tool based on information theory.
This paper presents a novel approach to profile-profile comparison. The method compares two input profiles (like those that are generated by PSI-BLAST) and assigns a similarity score to assess their statistical similarity. Our profile-profile comparison tool, which allows for gaps, can be used to detect weak similarities between protein families. It has also been optimized to produce alignments...
متن کاملIn search for more accurate alignments in the twilight zone.
A major bottleneck in comparative modeling is the alignment quality; this is especially true for proteins whose distant relationships could be reliably recognized only by recent advances in fold recognition. The best algorithms excel in recognizing distant homologs but often produce incorrect alignments for over 50% of protein pairs in large fold-prediction benchmarks. The alignments obtained b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1999